EPSRC logo

Details of Grant 

EPSRC Reference: EP/P033830/1
Title: Non-ergodic dynamics and topological-sector fluctuations in layered high-temperature superconductors
Principal Investigator: Faulkner, Dr MF
Other Investigators:
Researcher Co-Investigators:
Project Partners:
Superior School of Paris (ENS) (replace)
Department: Physics
Organisation: University of Bristol
Scheme: EPSRC Fellowship
Starts: 01 August 2017 Ends: 03 April 2022 Value (£): 293,118
EPSRC Research Topic Classifications:
Condensed Matter Physics
EPSRC Industrial Sector Classifications:
No relevance to Underpinning Sectors
Related Grants:
Panel History:
Panel DatePanel NameOutcome
25 Apr 2017 EPSRC Physical Sciences - April 2017 Announced
06 Jun 2017 EPSRC Physical Sciences Fellowship Interview Panel June 2017 Announced
Summary on Grant Application Form
At low enough temperatures, the constituent electrons of certain materials flow as a single body with zero electrical resistance. This is called superconductivity. The behaviour was first measured in solid mercury, which superconducts at around -270C and is therefore classed as a low-temperature superconductor. Certain copper-oxide-based materials, however, can superconduct at much higher temperatures: up to -130C. These materials therefore belong to the separate group known as high-temperature superconductors. This group of materials have extremely complex multi-layered crystal structures that are difficult to model, meaning that a theory of high-temperature superconductivity remains one of the major unsolved problems in condensed-matter physics.

At any given temperature, a superconductor will either be in its normal or superconducting state. Recent experiments on copper-oxide-based materials measured large fluctuations in their electrical resistances at the transition temperature between these two states. The large fluctuations are a result of the complex structures of the materials: a theoretical model for this phenomenon will therefore uncover details of these structures and drive the research community towards a complete theory of high-temperature superconductivity. This will lead to advances in the myriad engineering applications of superconductivity, which include superconductor-based quantum computing, magnetic resonance imaging, particle confinement in synchrotrons such as the Large Hadron Collider, plasma confinement in fusion reactors, and superconducting quantum interference devices used for high-precision magnetic measurements in medicine and further afield.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.bris.ac.uk