EPSRC Reference: |
EP/P033830/1 |
Title: |
Non-ergodic dynamics and topological-sector fluctuations in layered high-temperature superconductors |
Principal Investigator: |
Faulkner, Dr MF |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Physics |
Organisation: |
University of Bristol |
Scheme: |
EPSRC Fellowship |
Starts: |
01 August 2017 |
Ends: |
03 April 2022 |
Value (£): |
293,118
|
EPSRC Research Topic Classifications: |
|
EPSRC Industrial Sector Classifications: |
No relevance to Underpinning Sectors |
|
|
Related Grants: |
|
Panel History: |
|
Summary on Grant Application Form |
At low enough temperatures, the constituent electrons of certain materials flow as a single body with zero electrical resistance. This is called superconductivity. The behaviour was first measured in solid mercury, which superconducts at around -270C and is therefore classed as a low-temperature superconductor. Certain copper-oxide-based materials, however, can superconduct at much higher temperatures: up to -130C. These materials therefore belong to the separate group known as high-temperature superconductors. This group of materials have extremely complex multi-layered crystal structures that are difficult to model, meaning that a theory of high-temperature superconductivity remains one of the major unsolved problems in condensed-matter physics.
At any given temperature, a superconductor will either be in its normal or superconducting state. Recent experiments on copper-oxide-based materials measured large fluctuations in their electrical resistances at the transition temperature between these two states. The large fluctuations are a result of the complex structures of the materials: a theoretical model for this phenomenon will therefore uncover details of these structures and drive the research community towards a complete theory of high-temperature superconductivity. This will lead to advances in the myriad engineering applications of superconductivity, which include superconductor-based quantum computing, magnetic resonance imaging, particle confinement in synchrotrons such as the Large Hadron Collider, plasma confinement in fusion reactors, and superconducting quantum interference devices used for high-precision magnetic measurements in medicine and further afield.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.bris.ac.uk |