EPSRC Reference: |
EP/R00711X/2 |
Title: |
GBSense: GHz Bandwidth Sensing from Smart Antennas to Sub-Nyquist Signal Processing |
Principal Investigator: |
Gao, Professor Y |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Institute of Communications Systems |
Organisation: |
University of Surrey |
Scheme: |
EPSRC Fellowship |
Starts: |
02 January 2020 |
Ends: |
01 March 2023 |
Value (£): |
703,433
|
EPSRC Research Topic Classifications: |
Digital Signal Processing |
RF & Microwave Technology |
|
EPSRC Industrial Sector Classifications: |
|
Related Grants: |
|
Panel History: |
|
Summary on Grant Application Form |
Data rate for exchanging mobile information among people, machines and things has been exponentially increasing over the past decade. These data rates are empirically linked to radio spectrum availability. The exorbitant auction prices, e.g., £2.3 Billion for 4G spectrum in the UK, highlights the strength of the competitive market forces but also the scarcity of this precious resource. Driven by the scarcity of spectrum, the UK communications regulator (Ofcom) has made an innovative licence-exempt spectrum sharing on the ultra-high frequency (UHF) TV bands in January 2016, which is the first of its kind worldwide. These spectra of 320MHz bandwidth have enabled the transition from research on cognitive radio theory into practical applications. Furthermore, the millimetre-wave (mm-wave) spectrum on 28GHz, 39GHz, 60GHz with at least 1GHz bandwidth are being considered to be further unitised to cope with high data rate wireless applications and services demanded by users. The satellite and radar applications are co-existing in these mm-wave spectra, and thus any licence-exempt use of this spectra must first ascertain that the spectra to be used is not already in use by the so called "primary users". Therefore, sensing from several hundreds of MHz bandwidth in UHF to GHz bandwidth in mm-wave to gain a clear access to these spectra is critical, while resulting in formidable and complex challenge on the Nyquist-rate analog-to-digital sampling.
This fellowship project proposes a new approach to design GHz bandwidth sensing (GBSense) systems to overcome the bottleneck of Nyquist-rate sampling by developing sub-Nyquist sampling algorithms and repurposing the existing expertise of smart antennas and reconfigurable transmission lines. The GBSense offers new creative and implementable possibilities over a framework of real-time experimental platform without requiring Nyquist-rate sampling. The GBSense gives users access to a flexible hardware platform and application software that enables real-time over the air GHz bandwidth signal sensing, analysis and communication at both sub-6GHz and mm-wave frequency bands. It will also interface with a low-cost computing unit, e.g., Raspberry PI, where sub-Nyquist algorithms are hosted, for enabling better human-computer interaction and advance the current knowledge in sub-Nyquist sampling theory and bring a new set of challenges to both software and hardware engineers. Results will be disseminated to both software and hardware academic researchers, industry and the public through workshops, change-led competitions, open-source plans and outreach activities.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.surrey.ac.uk |