EPSRC Reference: |
EP/R01308X/1 |
Title: |
Complex Chemical Systems Platform Exploring Inorganic Intelligence |
Principal Investigator: |
Cronin, Professor L |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
School of Chemistry |
Organisation: |
University of Glasgow |
Scheme: |
Platform Grants |
Starts: |
01 April 2018 |
Ends: |
31 March 2023 |
Value (£): |
1,586,635
|
EPSRC Research Topic Classifications: |
Artificial Intelligence |
Chemical Synthetic Methodology |
|
EPSRC Industrial Sector Classifications: |
Chemicals |
Pharmaceuticals and Biotechnology |
|
Related Grants: |
|
Panel History: |
Panel Date | Panel Name | Outcome |
19 Sep 2017
|
Platform Grant Interviews - 20 September 2017
|
Announced
|
|
Summary on Grant Application Form |
Our vision is to establish the new field of inorganic intelligence by defining the key fundamental science problems, and by developing researchers equipped with the right skills to explore this emerging area of science. The Cronin Group has made world-leading contributions to foundational aspects of this research and now we need to explore, unify, and develop some of the central science problems. These include how to explore and control, and understand complex chemical systems using robotics and real-time data. We anticipate that the coordinated development of these four topics will lead into applications as diverse as self-assembly control in nano molecules, chemical synthesis and discovery automation or artificial intelligence (AI) optimisation of reactions and exploration and discovery of new underpinning principles. The new grant will continue to unify and develop synergies already established during the previous Platform, but most importantly will ensure continuity and stability. This will enable the team to evolve from focusing on inorganic systems to the digital control and exploration of complex chemical systems. The new Platform will not only contribute to unify the many strands already existing in the team, but will also allow an extension to new disciplines including robotics, machine learning, and development of synergies across those areas - a combination of topics very rarely merged and hence extremely hard to raise funding using other mechanisms. Thus, the new Platform is essential for continuation and the evolution of the research activity, giving added value in integrating the group, allowing us to be strategic and develop the team into the chosen new areas defining the area of 'inorganic intelligence'. The previous grant was instrumental in letting us extend our critical mass, enhance key existing international collaborations, and support inter-group collaborations in Glasgow, which allowed us to speculate and develop our exploratory work in chemical robotics. In addition, we had the flexibility to support and further consolidate some of the existing team, and to hire in new expertise, as well as restructure the team with help from the EPSRC mentor scheme. We need the new platform to continue our team development and provide stability and flexibility especially important during the next few years. As before, we will aim for our best results to be published in Science and Nature, protect innovations by patent applications, and engage a user group and industrialists as well as other world-leading academics to maximise both the academic and technological impact. This will be achieved by making full use of funding from various sources, aiming at areas that need to be developed using the Platform as a consolidating component. We will also seed 'pump-prime' projects within the Platform, provide bridging funding, and be ready to exploit unexpected and high impact results. The Platform will ensure the group remains at critical mass at a critical time, and at the cutting edge of science in a range of new areas.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.gla.ac.uk |