EPSRC logo

Details of Grant 

EPSRC Reference: EP/R01485X/1
Title: Computational Methods for Anaerobic Digestion Optimization (CoMAnDO)
Principal Investigator: Bridgeman, Professor J
Other Investigators:
Cassidy, Professor NJ
Researcher Co-Investigators:
Dr D Dapelo
Project Partners:
North Midland Construction (NM Group) Severn Trent Water Ltd The Fluid Group
Department: Faculty of Engineering and Informatics
Organisation: University of Bradford
Scheme: Standard Research
Starts: 01 April 2018 Ends: 31 August 2021 Value (£): 341,482
EPSRC Research Topic Classifications:
Water Engineering
EPSRC Industrial Sector Classifications:
Environment Water
Related Grants:
Panel History:
Panel DatePanel NameOutcome
04 Oct 2017 Engineering Prioritisation Panel Meeting 4 October 2017 Announced
Summary on Grant Application Form
Renewable energy is key to the UK Government's environmental strategy. The by-product of wastewater treatment, sludge, is most commonly treated via mesophilic anaerobic digestion (AD), in which sludge is mixed with anaerobic bacteria to degrade biodegradable material and produce a methane-rich biogas. Biogas can then be harnessed via combined heat and power technology for energy recovery. Whilst water companies initially implemented the processes for sludge stabilization, the current focus on the role of renewables in securing our energy future means that there still remains a pressing need to optimize digester design and mixing to maximize energy recovery.

Mixing is crucial to digester performance. This project, CoMAnDO, will use the highly innovative approach of coupled hydrodynamic/anaerobic digestion numerical modelling to identify mixing regimes and associated flow patterns that optimise biological activity and biogas output, while minimising energy input and avoiding grit deposition, for anaerobic sludge digesters operating with unconfined gas mixing of municipal wastewater sludge. We will simulate for the first time the complex relationships between hydrodynamic and biokinetic processes in anaerobic digestion to facilitate optimization of process design and operation. The final output will be a methodology for the robust, yet computationally efficient modelling of gas-mixed mixing in anaerobic digesters, together with a set of practitioner guidelines for the most efficient and effective design and operation of digestion systems which can be applied extensively worldwide to provide the maximum renewable energy benefit that can be derived from an anaerobic digestion plant. There are, therefore, tangible outputs and benefits for academics and practitioners to be derived from CoMAnDO. Whilst initially focussed on the water industry, it is believed that the new modelling methodology developed here could lead to the development and widespread adoption of a new class of simulation tools with applications in many other academic disciplines.

This project falls within the EPSRC 'Water Engineering' theme, defined as "Design and optimisation of technologies relating to water resource management, treatment and distribution systems". It addresses EPSRC's stated Resilient, Healthy and Productive Nation Outcomes and specifically addresses several of EPSRC Ambitions; viz: R1: Achieve energy security and efficiency; R2: Ensure a reliable infrastructure which underpins the UK economy; R4: Manage resources efficiently and sustainably.

Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.brad.ac.uk