EPSRC Reference: |
EP/R024421/1 |
Title: |
Stiction-Free and Tuneable Nano-Electro-Mechanical Systems Incorporating Liquid Crystals |
Principal Investigator: |
Fedotov, Dr VA |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Optoelectronics Research Centre (ORC) |
Organisation: |
University of Southampton |
Scheme: |
Standard Research |
Starts: |
01 July 2018 |
Ends: |
28 February 2022 |
Value (£): |
783,222
|
EPSRC Research Topic Classifications: |
Complex fluids & soft solids |
Materials Characterisation |
Materials Synthesis & Growth |
Microsystems |
Optoelect. Devices & Circuits |
|
|
EPSRC Industrial Sector Classifications: |
Chemicals |
Electronics |
Information Technologies |
|
|
Related Grants: |
|
Panel History: |
|
Summary on Grant Application Form |
Nano-electro-mechanical systems (NEMS) are integrated miniature devices that can sense or actuate on the nanoscale, while generating observable effects on the macroscale. They are beginning to shape into one of the key technologies of the 21st century, which has the potential to revolutionize both industrial and consumer products, transforming the way we live and work through a multitude of applications (ranging from displays, smart phones, portable electronics and computer peripherals to cars, medical diagnostics and therapy, metrology and navigation). However, nanoscopic mechanical motion underpinning the functionality of such systems is often affected by a number of parasitic effects and the chief among them is stiction - unintentional adhesion of moving parts leading to a catastrophic failure of the devices. Correspondingly, the ability to engage and control reliably mechanical movements in NEMS is the main challenge of the technology.
We believe that by combining NEMS with liquid crystals we can meet this challenge in a simple yet efficient manner and develop a new generation of NEMS - stiction-free hybrid nano-electro-mechanical systems, which will feature dynamically adjustable behaviour and field-programmable functions. Our approach exploits elastic distortions in liquid crystals coupled to nanoscopic mechanical motion in operating NEMS. By engaging transitions between various structural phases of liquid crystals and their susceptibility to a wide range of stimuli (i.e. heat, light, electric and magnetic fields) we will introduce a mechanism for tuning dynamically the response characteristics of the resulting hybrids and eliminate the need for additional integrated circuitry, thus, reducing the overall complexity and cost of the devices. A broad spectrum of structural transitions exhibited by liquid crystals (when confined at the nanoscale) should further enrich the behavior of such hybrid NEMS as actuators, sensors, relays, re-configurable metamaterials and plasmonic circuits, making the development of adaptive and 'smart' nanosystems a practical proposition.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.soton.ac.uk |