EPSRC Reference: |
EP/R029393/1 |
Title: |
Materials and Devices for Next Generation Internet (MANGI) |
Principal Investigator: |
Kuball, Professor M |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Physics |
Organisation: |
University of Bristol |
Scheme: |
Platform Grants |
Starts: |
01 June 2018 |
Ends: |
31 May 2023 |
Value (£): |
1,458,558
|
EPSRC Research Topic Classifications: |
RF & Microwave Technology |
|
|
EPSRC Industrial Sector Classifications: |
|
Related Grants: |
|
Panel History: |
Panel Date | Panel Name | Outcome |
23 Jan 2018
|
Platform Grant Interviews - 23 and 24 January 2018
|
Announced
|
|
Summary on Grant Application Form |
The rapid growth of the rich variety of connected devices, from sensors, to cars, to wearables, to smart buildings, is placing a varied and highly complex set of bandwidth, latency, priority, reliability, power, roaming, and cost requirements on how these devices connect and on how information is moved around. Efficient communications remains a very difficult challenge for our digital world, and understanding how to design devices and systems that make good trade-offs between these different requirements requires skills from several disciplines.
MANGI will underpin the critical mass and expertise in Bristol's Smart Internet and Devices Laboratory (SIDL) enabling the creation of a Next Generation Internet, with career development of our senior and most talented postdoctoral researchers forming a core part of our activity. Bristol's SIDL brings together the Smart Internet Lab (SIL) in Electrical & Electronic Engineering and the Centre for Device Thermography and Reliability (CDTR) in Physics at the University of Bristol, and has a world-leading track record, spanning the complete digital communication engine from novel wide bandgap semiconductor RF/optical devices to state-of-the-art high performance network architecture design and operation, on the pathway to enabling the Next Generation Internet.
New devices and materials are critically needed as key enablers for the necessary transition from the current to the Next Generation Internet which needs to be energy efficient and provide highly flexible connectivity across optical-wireless domains. Using pump-priming projects to retain and develop our outstanding postdoctoral researchers, revolutionary interdisciplinary approaches will be developed in order to adopt high risk strategies focused on grand challenges aimed at enabling the Next Generation Internet. This approach taken is not possible with standard mode funding. Advances in component technologies, to provide higher speed/linearity, higher power devices, more compact device and packaging design, alongside use of new materials will have transformative impact upon network operation.
The flexibility of the platform will be a corner stone of MANGI, allowing our most senior postdoctoral researchers to develop and drive their own research ideas, with interdisciplinary mentoring by senior members of SIDL and industry. This will help remove blockages in current technology and overcome the current internet infrastructure challenges. Standard research paths are not able to support independent development and innovation at physical and network layer functionalities, protocols, and services, while at the same time supporting the increasing bandwidth demands of changing and diverse applications, largely because of current limitations in semiconductor device and packaging technology and a lack of co-design of the multitude of constituent parts.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.bris.ac.uk |