EPSRC Reference: |
EP/R034915/1 |
Title: |
A semi-autonomous robot synthetic biologist for industrial biodesign and manufacturing |
Principal Investigator: |
Baldwin, Professor G |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Life Sciences |
Organisation: |
Imperial College London |
Scheme: |
Standard Research |
Starts: |
01 September 2018 |
Ends: |
31 August 2022 |
Value (£): |
884,199
|
EPSRC Research Topic Classifications: |
Artificial Intelligence |
Synthetic biology |
|
EPSRC Industrial Sector Classifications: |
No relevance to Underpinning Sectors |
|
|
Related Grants: |
|
Panel History: |
|
Summary on Grant Application Form |
The last decade has seen significant advances in the fields of synthetic biology as well as robotics and artificial intelligence (AI). Synthetic biology is an emerging multidisciplinary field with potential to have step-change benefits in many fields from medicine through to industrial biotechnology. This advance is dependent on the ability to rationally engineer biological organisms in a more predictable and defined way than has previously been possible.
Bio-manufacturing is an increasingly important platform for a sustainable manufacturing future. Many natural products have potentially valuable nutraceutical or pharmaceutical applications, but cannot be chemically synthesised or harvested from nature without significant ecological disruption. The engineering of biology by design seeks to construct new biological entities that are optimised for specific functionality such as bio-production within a 'cellular factory'. Synthetic biology provides a method for optimising production of complex natural products using sustainable methods in a microbial production host, much like ethanol is produced in yeast. Advanced synthetic biology tools will enable us to tackle more complex targets. Here, by integrating synthetic biology tools with robotics and AI we aim to make a significant advance to reducing the cost and development time of new biologically derived products.
It is now evident that robotics is essential for synthetic biology to fulfil its potential and is of particular relevance to industrial biotechnology. In parallel, big data has become increasingly important in many areas of technology as well as the biological domain. This is leading to new and powerful applications of AI in everyday life. Here we seek to address the application of AI to synthetic biology, using AI approaches to direct automated synthetic biology experiments.
These advances will have the potential to create new products, companies and even industries that will ultimately benefit the economy, health, quality of life and security of the UK general public and beyond. It will also have far-reaching effects on policy and society.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.imperial.ac.uk |