EPSRC Reference: |
EP/S00193X/2 |
Title: |
Powering Carbon-free Autonomous Shipping: Ammonia/Hydrogen dual-fuelled Linear Engine-Generator |
Principal Investigator: |
Wu, Dr D |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Mechanical Engineering |
Organisation: |
University of Birmingham |
Scheme: |
EPSRC Fellowship - NHFP |
Starts: |
01 January 2020 |
Ends: |
31 December 2021 |
Value (£): |
452,877
|
EPSRC Research Topic Classifications: |
Electric Motor & Drive Systems |
Energy Efficiency |
|
EPSRC Industrial Sector Classifications: |
Energy |
Transport Systems and Vehicles |
|
Related Grants: |
|
Panel History: |
|
Summary on Grant Application Form |
The project aims to develop a new power generation technology for full electrical propulsion (FEP) ships, based on an ammonia/hydrogen dual-fuelled Linear Engine-Generator (df-LEG), proposed in this application. The external ammonia reactor of the df-LEG uses a small amount of hydrogen, electrolysed from ammonia as the pilot fuel, to sustain continuous and stable ammonia combustion. Ammonia is identified as one of the most promising hydrogen carriers to enable a 'Hydrogen Economy' in the marine sector. It can be produced with renewable sources and stored in a safe and volumetrically-efficient way (-34C and ambient pressure) on board ships for long-distance maritime journeys. The 'carbon-free' emissions from complete ammonia oxidisation are mostly water and nitrogen, which could make a substantial contribution to reducing maritime transport carbon emissions (which currently stand at approximately 1000 million tonnes of CO2 annually). The research will potentially contribute to important debates at national and international level regarding the nature of the future hydrogen economy, mainly: how will shipping be powered in the 'Hydrogen Era' and can this technology contribute to future 'carbon-free' autonomous shipping.
The proposed df-LEG utilises a novel configuration, which is the first-of-its-kind to fully integrate a linear alternator into a linear engine. Conventional internal combustion free-piston engine prototypes (10-20kWe), such as those built by Toyota (42% electric efficiency) and Newcastle University (34-45%) have already proved to be as efficient as proton-exchange membrane fuel cells. While the df-LEG prototype will demonstrate a comparable efficiency to the existing technologies, it has the potential to further advance the efficiency to more than 40% due to friction reduction, transmission loss minimisation, and thermodynamic cycle improvement. The pressure ratio can be increased to 30:1 due to the closed-cycle structure to further boost the overall efficiency.
The prototype design approaches will involve a mixture of computational design and experimental testing, and builds upon ongoing research projects at Newcastle University (Innovate UK TS/P010431/1, EPSRC Impact Acceleration Awards). The research will be the first to demonstrate the feasibility of this integrated design and seek to answer questions regarding the fundamental relationships between ammonia chemical reaction, thermodynamic process, moving part (piston and magnets) dynamics, and electric energy generation. The experimental study on the prototype will fill the gap on our understanding of thermodynamics and dynamics of the linear engine-generator operating with a non-air working fluid. The research will also identify the best ratio of ammonia, air and hydrogen to optimise heat output and NOx emissions, eventually aiming to make the df-LEG the first direct 'ammonia-to-electricity' energy convertor.
The fellowship will be set in the vibrant academic environment of Newcastle University's disruptive linear engine and linear alternator technologies team. The project will include collaborations with national and international stakeholders: Meyer Werft (shipyard), Siemens (system designer), BNC (linear engine engineering), Wessington Cryogenics (cryogenic and pressurised tank manufacturer) and Arnold Magnets (linear alternator magnets manufacturer). The proposed new marine power technology will be considered in a scenario design for a cruise ship under construction at Meyer Werft, during the secondment of the PI.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.bham.ac.uk |