EPSRC logo

Details of Grant 

EPSRC Reference: EP/S019472/1
Title: Chemobots: Digital-Chemical-Robotics to Convert Code to Molecules and Complex Systems
Principal Investigator: Cronin, Professor L
Other Investigators:
Adams, Professor DJ Clark, Professor J Woods, Professor D
Symes, Dr MD Aragon-Camarasa, Dr G Padgett, Professor M
Lapkin, Professor A
Researcher Co-Investigators:
Project Partners:
BAE Systems DeepMatter GlaxoSmithKline plc (GSK)
Millipore Corporation UCB
Department: School of Chemistry
Organisation: University of Glasgow
Scheme: Programme Grants
Starts: 01 August 2019 Ends: 31 July 2024 Value (£): 5,034,017
EPSRC Research Topic Classifications:
Analytical Science Chemical Synthetic Methodology
EPSRC Industrial Sector Classifications:
Manufacturing Chemicals
Pharmaceuticals and Biotechnology Information Technologies
Related Grants:
Panel History:
Panel DatePanel NameOutcome
31 Oct 2018 Programme Grant Interviews - 31 October 2018 (PS) Announced
Summary on Grant Application Form
Our aim is to develop an approach to make and discover molecules using a chemical programming language that is run in a modular Chemical-Robot or Chemobot. To do this we need to develop a 'Universal Chemical Synthesis Machine' architecture which we will refer to here as 'the Chemputer'. The Chemputer represents a new architecture for running chemical synthesis, and will be realised by the development of a portable and modular approach to chemistry. To do this we must establish the ontological relationships and abstractions to allow the development of a code that will drive machine-independent universal synthesis. This ontology will connect a high-level chemical programming language we will develop to the low-level machine code to run the modular Chemobots. The Chemobots will be designed and built around batch 'flask' synthesis and can be networked together allowing the molecules to be made in steps.

By establishing the framework and building the underlying firmware, software, and abstractions, we will demonstrate the Chemputer by developing modular robots capable of chemistry, Chemobots. These will be built around batch 'flask' synthesis and can be networked together allowing the molecules to be made discretely in steps. Although synthetic chemistry is complex and demanding, a chemical reaction only requires five operations: i) addition of reagents; ii) reaction process; iii) work-up; iv) separation; v) purification. We will take our Chemputer standard, comprising five modules for batch operations, and enlist our expert pioneer collaborators and industrial stake holders, to test and validate our approach. Importantly, we have already validated the concept of chemical digitization, and the platform approach highlighted by our recent publications in Science and Nature earlier this year. Also, this work builds on our previous programme grant 'digital-synthesis' in terms of our technical abilities to build platforms and write software. However, the vision of the Chemputer architecture represents a step change, resulting in practical Chemobots. We will use the systems of modular Chemobots to also explore reproducibility, and to improve the environment for the chemist from a workflow, safety, and pedagogical point of view. In addition, the ability to individually validate and digitize reactions one by one should allow for the ability to synthesize very complex molecules autonomously as the stability and usability of the systems improve. We will start using our preliminary platform as a 'generation 0' to enable the development of the abstraction, architecture, and ontologies for digital chemistry. As the Chemobots are developed we will explore new reactions using sensors and statistics driven design of experiments to target unknown molecules with target-assay driven search algorithms.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.gla.ac.uk