Monitoring vital signs is essential in healthcare, and although there are currently several ways of doing so, either at the hospital environment or at home, conventional devices pose different challenges to their users, being bulky and uncomfortable, often complicated to operate by non-experts, and extremely expensive. With the Internet-of-Things (IoT)-driven device connectivity and technological advancements, as cellular connectivity is replaced by other types of wireless communications like Bluetooth, the fast-growing market of connected wearables also plays an important role in the emerging market of remote patient monitoring, since wearable devices also enable a hands-free operation and continuous recording of useful data.
Integrating sensors for body temperature, breathing rate and cardiac activity directly on textiles would eliminate the inconvenience of uncomfortable hardware directly in contact with the human skin. This is very important in the case of electrocardiography, particularly when performed continuously, which requires the prolonged use of gel electrolytes to reduce the resistance between the skin and the electrode, often causing allergies and skin irritation. In addition to measuring temperature, cardiac activity and breathing rate, wearable sensors can also be used to track a person's body movements, which can also find applications in different fields, such as physiotherapy and rehabilitation. For instance, gait patterns can provide a lot of information about a patient's health. Moreover, these body movements and wasted body heat are often underestimated as a means to generate energy to power wearable devices.
This project aims to innovative develop graphene-based and self-powered vital signs sensors fully integrated on textiles and with wireless communication capabilities. Such sensors offer a comfortable and almost imperceptible way of continuous monitoring, as opposed to heavy and bulky equipment currently in use for the same purpose. Exposed to external stimuli, such as mechanical deformations or variations in temperature, the conductivity of these textiles will change in a predictable way, and this will be explored for sensing purposes. Furthermore, these conducting textiles will also be used as electrodes for electrocardiography. A self-contained and environmentally friendly energy source based on a triboelectric nanogenerator, capable of harvesting energy from the movements of the user, will also be developed using similar materials and methods. This innovative approach of building the sensors directly on textiles will put the UK in the forefront in the field of continuous vital sign monitoring and remote healthcare and has the potential to generate numerous business opportunities.
Allied to self-monitoring and self-care, with the rise of remote health monitoring there is an increasing need of practical and convenient vital sign monitoring devices with sensors that can be self-powered, easily integrated with conventional electronics and wireless communications, and simply operated in the palm of our hands, for instance, using a mobile phone.
To ensure that this project is carried out successfully, a team comprising the PI, 2 postgraduate research students (PGRS) and one experienced postdoctoral research associate (PDRA) will be assembled, and will work closely with two industrial partners with expertise in the textile industry, (Centexbel, Belgium and Heathcoat, UK), and two academic partners from Skoltech, Russia, with expertise in electronics and wireless communications, and UCL, UK, with expertise in data processing, ideal to complement the expertise in materials, nanotechnology and physics of the team at Exeter.
|