EPSRC Reference: |
EP/S030603/1 |
Title: |
CHEMIFY: A System to Produce Universal Digital Chemical Synthesis |
Principal Investigator: |
Cronin, Professor L |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
School of Chemistry |
Organisation: |
University of Glasgow |
Scheme: |
Standard Research |
Starts: |
01 September 2019 |
Ends: |
31 August 2023 |
Value (£): |
1,084,544
|
EPSRC Research Topic Classifications: |
Chemical Synthetic Methodology |
Technology and method dev |
|
EPSRC Industrial Sector Classifications: |
Chemicals |
Pharmaceuticals and Biotechnology |
|
Related Grants: |
|
Panel History: |
Panel Date | Panel Name | Outcome |
07 Mar 2019
|
Intl Centre to Centre Fulls
|
Announced
|
|
Summary on Grant Application Form |
The aim of this proposal is to establish a standard digital code for the synthesis of molecules. Like Spotify, which allows the distribution of music in an mp3 (or similar) digital format, the development of a chemical code for synthesis will allow users to share their code as a result of the digitisation 'Chemify' process. The code will be demonstrated both manually and on basic robotic systems available in our laboratory (GU) and with our international collaborators based in the USA (MB), Canada (AAG), Germany (PS), and Poland (BG) who are experts in modular organic scaffold synthesis (MB), computational chemistry and statistics for experimental design (AAG), robotic carbohydrate synthesis (PS), and networks and rules of chemical synthesis (BG). In the long term, the ability to automate the synthesis of molecules will lower the cost of manufacture by enabling the automatic and unbiased exploration of chemical space giving a digital code. Such codes are needed if chemists are to develop systems that ensure reproducibility, and the ability to explore new reactions and statistics driven design of experiments to target unknown molecules. Recently we took a key step to encoding a multi-step synthesis into a digital blueprint,1 but the vision to go from code to molecules represents a gigantic problem. In this proposal, we will aim to develop a chemical ontology for synthetic chemistry that will lead to the first version of a programming language for chemical synthesis. We will then demonstrate the code can be used to synthesise important molecules, already robotically synthesised by us, and examples from our collaborators in the USA, Germany, Canada and Poland on the same universal 'chemputer' synthesise robot.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.gla.ac.uk |