EPSRC Reference: |
EP/S030875/1 |
Title: |
SofTMech with MIT and POLIMI (SofTMechMP) |
Principal Investigator: |
Luo, Professor X |
Other Investigators: |
Roper, Dr SM |
McGinty, Dr S |
Berry, Professor C |
Hill, Professor NA |
McDougall, Professor S |
Gao, Dr H |
Yin, Professor H |
Stewart, Dr PS |
Dalby, Professor MJ |
Insall, Professor R |
Ogden, Professor RW |
Chaplain, Professor MAJ |
Penta, Dr R |
Simitev, Dr RD |
Husmeier, Professor D |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
School of Mathematics & Statistics |
Organisation: |
University of Glasgow |
Scheme: |
Standard Research |
Starts: |
01 January 2020 |
Ends: |
31 December 2023 |
Value (£): |
1,599,530
|
EPSRC Research Topic Classifications: |
Continuum Mechanics |
Numerical Analysis |
|
EPSRC Industrial Sector Classifications: |
|
Related Grants: |
|
Panel History: |
Panel Date | Panel Name | Outcome |
07 Mar 2019
|
Intl Centre to Centre Fulls
|
Announced
|
|
Summary on Grant Application Form |
Soft tissue related diseases (heart, cancer, eyes) are among the leading causes of death worldwide. Despite extensive
biomedical research, a major challenge is a lack of mathematical models that predict soft tissue mechanics across
subcellular to whole organ scales during disease progression. Given the tremendous scope, the unmet clinical needs, our
limited manpower, and the existence of complementary expertise, we seek to forge NEW collaborations with two world-leading
research centres: MIT and POLIMI, to embark on two challenging themes that will significantly stretch the initial
SofTMech remit: A) Test-based microscale modelling and upscaling, and B) Beyond static hyperelastic material to include
viscoelasticity, nonlinear poroelasticity, tissue damage and healing. Our research will lead to a better understanding of how
our bodies work, and this knowledge will be applied to help medical researchers and clinicians in developing new therapies
to minimise the damage caused by disease progression and implants, and to develop more effective treatments.
The added value will be a major leap forward in the UK research. It will enable us to model soft tissue damage and healing
in many clinical applications, to study the interaction between tissue and implants, and to ensure model reproducibility
through in vitro validations. The two underlying themes will provide the key feedback between tissue and cells and the
response of cells to dynamic local environments. For example, advanced continuum mechanics approaches will shed new
light on the influence of cell adhesion, angiogenesis and stromal cell-tumour interactions in cancer growth and spread, and
on wound healing implant insertion that can be tested with in vitro and in vivo systems. Our theoretical framework will
provide insight for the design of new experiments.
Our proposal is unique, timely and cost-effectively because advances in micro- and nanotechnology from MIT and POLIMI
now enable measurements of sub-cellular, single cell, and cell-ECM dynamics, so that new theories of soft tissue
mechanics at the nano- and micro-scales can be tested using in vitro prototypes purposely built for SofTMech. Bridging
the gaps between models at different scales is beyond the ability of any single centre. SofTMech-MP will cluster the critical
mass to develop novel multiscale models that can be experimentally tested by biological experts within the three world-leading
Centres. SofTMech-MP will endeavour to unlock the chain of events leading from mechanical factors at subcellular
nanoscales to cell and tissue level biological responses in healthy and pathological states by building a new mathematics
capacity.
Our novel multiscale modelling will lead to new mathematics including new numerical methods, that will be informed
and validated by the design and implementation of experiments at the MIT and POLIMI centres. This will be of enormous
benefit in attacking problems involving large deformation poroelasticity, nonlinear viscoelasticity, tissue dissection, stent-related
tissue damage, and wound healing development. We will construct and analyse data-based models of cellular and
sub-cellular mechanics and other responses to dynamic local anisotropic environments, test hypotheses in mechanistic
models, and scale these up to tissue-level models (evolutionary equations) for growth and remodelling that will take into
account the dynamic, inhomogeneous, and anisotropic movement of the tissue. Our models will be simulated in the
various projects by making use of the scientific computing methodologies, including the new computer-intensive methods
for learning the parameters of the differential equations directly from noisy measurements of the system, and new methods
for assessing alternative structures of the differential equations, corresponding to alternative hypotheses about the
underlying biological mechanisms.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.gla.ac.uk |