EPSRC logo

Details of Grant 

EPSRC Reference: EP/T003332/1
Title: Investigations of HTGR Reactor Building Response to Break in Primary Coolant Boundary
Principal Investigator: Walker, Dr S
Other Investigators:
Bluck, Dr MJ Issa, Dr R
Researcher Co-Investigators:
Project Partners:
Department: Mechanical Engineering
Organisation: Imperial College London
Scheme: Standard Research - NR1
Starts: 01 January 2020 Ends: 31 December 2022 Value (£): 419,374
EPSRC Research Topic Classifications:
Energy - Nuclear
EPSRC Industrial Sector Classifications:
Energy
Related Grants:
Panel History:
Panel DatePanel NameOutcome
06 May 2019 NEUP Phase 5 Announced
Summary on Grant Application Form
The United Kingdom government has stated that its intention is to maintain nuclear energy as a significant contributor to electricity production in United Kingdom. This is because it provides a relatively low cost, stable, and essentially emissions free source of electricity. It is complementary to "renewables" such as solar and wind. Renewables operate only intermittently (on windy days, or when the sun shines, and for example, in the UK a typical solar installation will actually generate electricity for only about 1/10 of the year.)

Until recently 'nuclear' provided approaching 30% of the country's electricity, but these plants are now reaching the end of their lives (after typically 40 or more years), and there is a need to replace them. Naturally, 50 years on, it is appropriate to replace them with more modern designs. This project is to help design some of this next generation of nuclear power stations. Britain's existing fleet of nuclear stations is largely gas cooled, and this project is to help develop the next generation of high-temperature gas cooled reactors. The particular project is to develop both experimental facilities and computational methods to understand the behaviour of the plants under the very unlikely circumstances that part of the gas circuit of the plant were to spring a leak. One of the characteristics making these new designs "advanced" is that they are extremely tolerant of this, and they will be designed such that they are essentially immune from any adverse consequences following such a leak. This project is to help to confirm and demonstrate that fact.

It is a collaborative project with United States, where essentially identical conditions apply. It will involve building a large-scale experimental facility to simulate the behaviour of a wide range of plants of this type. Measurements will be made, to determine the response of the plant to the leak. In parallel with this, computational methods will be developed to enable more detailed assessments to be made of specific actual reactor designs. These computational tools will assist with both design optimisation, and with the assessments of the plants as part of the licensing process.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.imperial.ac.uk