EPSRC logo

Details of Grant 

EPSRC Reference: EP/T012811/1
Title: Addressing self-irradiation damage and its impact on the long-term behaviour of nuclear waste matrices
Principal Investigator: Mir, Dr A
Other Investigators:
Researcher Co-Investigators:
Project Partners:
ANSTO CEA - Atomic Energy Commission National Nuclear Laboratory
University of Cambridge
Department: Sch of Computing and Engineering
Organisation: University of Huddersfield
Scheme: EPSRC Fellowship
Starts: 01 April 2020 Ends: 31 March 2024 Value (£): 1,055,775
EPSRC Research Topic Classifications:
Energy - Nuclear
EPSRC Industrial Sector Classifications:
Energy
Related Grants:
Panel History:
Panel DatePanel NameOutcome
29 Jan 2020 Engineering Fellowship Interview Panel 29 and 30 January 2020 Announced
08 Oct 2019 Engineering Prioritisation Panel Meeting 8 and 9 October 2019 Announced
Summary on Grant Application Form
Nuclear fission offers a reliable low carbon source of energy, but, the nuclear waste generated as a result of nuclear reactor operation needs proper treatment and confinement in a durable material to ensure that the biosphere is not contaminated with radioactive elements in the near and long-term future. Geological disposal (GD) - which involves confining the host material inside a safety barrier (usually a metal canister) and then permanent deposition of such wastepackages in a pre-selected geological site - is now an internationally accepted methodology including the UK. Nonetheless, after thousands of years, the outer safety barrier will get corroded and the host material will be exposed to the surrounding geological conditions. When in contact with water/moisture, the radioelements may be released from the host matrix into the surrounding geology from where they can be transported into the biosphere. Understanding long-term changes in the wastepackages -starting from the day of their fabrication - is a key element in addressing the eventual release of the radioisotopes. Besides corrosion, one of the reasons why the wastepackages will change under geological disposal conditions is the fact that radioactive decay of the confined radioisotopes will damage the host matrix at atomic level called as self-irradiation damage. This damage accumulation over hundreds of thousands to millions of years can potentially alter the chemical and mechanical durability of the wastepackages. These irradiation induced modifications can have a significant effect on the eventual release of the radioisotopes. Thus, addressing radiation stability of the wastepackages is an essential part of demonstrating long-term safety of the geological disposal.

This research proposal will utilize MIAMI irradiation facility at the University of Huddersfield to study the effects of self-irradiation damage and He accumulation in various types of waste packages ranging from glasses to glass-ceramic composites. Using a transmission electron microscope with in-situ dual-ion-beam irradiation, the irradiation induced modifications will be monitored in real time. The dual-ion-beam irradiation represents the closest analogue to self-irradiation damage in nuclear wasteforms yielding reliable and realistic results. These ion irradiation effects will be compared with actinide doping studies to be undertaken in collaboration with nuclear industry partners, thereby, allowing establishing the irradiation conditions necessary to simulate the self-irradiation damage. The research will be undertaken on leached (gels) and non-leached materials to understand the irradiation induced evolution of the wastepackages and address the effect of radiation damage on the leaching and vice versa. By collaborating with external partners such as ANSTO Australia, CEA Marcoule France, University of Cambridge and, National Nuclear Lab UK, this proposal will bring together the experience and expertise of internationally recognised researchers to develop a better understanding of the wasteform evolution due to self-irradiation damage under geological disposal conditions including leaching.

Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.hud.ac.uk