EPSRC Reference: |
EP/T018984/1 |
Title: |
Entangled quantum sensors: enhanced precision at the Heisenberg limit |
Principal Investigator: |
Weides, Professor MP |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
School of Engineering |
Organisation: |
University of Glasgow |
Scheme: |
Standard Research |
Starts: |
01 April 2020 |
Ends: |
31 March 2023 |
Value (£): |
514,764
|
EPSRC Research Topic Classifications: |
Electronic Devices & Subsys. |
Quantum Optics & Information |
|
EPSRC Industrial Sector Classifications: |
Healthcare |
Information Technologies |
|
Related Grants: |
|
Panel History: |
Panel Date | Panel Name | Outcome |
15 Jan 2020
|
EPSRC ICT Prioritisation Panel January 2020
|
Announced
|
|
Summary on Grant Application Form |
Multi-body interactions enable the implementation of quantum-mechanically entangled multi-qubit states, and if used as a sensor will greatly improve its sensitivity. As today or near-term 'quantum' sensors still work without entanglement, an improvement in sensitivity can be the key break-through for achieving a quantum advantage, where true quantum sensors surpass the capabilities of classical technology. Here we will build the world's first multi-body sensor using superconducting circuits and use them to implement ensemble sensing and thereby greatly increase the circuit sensitivity -even more, if entangled. Our research plan starts from circuit concepts developed by me, implements these in cutting edge superconducting circuit technology and explores their applications in technology and blue-sky science. The vision of this project is the creation of a quantum sensor with multi-body interactions that allow for quantum speed-up in sensing with less hardware overhead than classical (not entangled sensors). A central aim is thus to generate UK based IP for a multi-body sensor which forms a highly important building block of future and near-term quantum sensors and imaging devices. Building on these sensors, the project will explore the generation of many-body states, and coupling them to an outer field. It will thus also open avenues to answer open physics and technology questions of high importance which remain challenging due to the difficulty of determining sources of decoherence in a many-body system. We are the first group to start building superconducting multi-body sensors and go in this research direction. This project will enable us to expand the lead we currently have. Compelling applications of our sensors are e.g. noise detection in quantum computers, or particle physics experiments.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.gla.ac.uk |