EPSRC Reference: |
EP/T031271/1 |
Title: |
Quantum Science and Device Facility (QSDF) |
Principal Investigator: |
Connolly, Dr MR |
Other Investigators: |
Jennings, Professor N |
Clark, Dr A S |
Cohen, Professor LF |
Walmsley, Professor IA |
Sapienza, Dr R |
Branford, Dr WR |
Vanner, Dr MR |
Alford, Professor N |
Tarbutt, Professor MR |
Fuchter, Dr MJ |
Petrov, Dr PK |
Breeze, Dr JD |
Mattevi, Dr C |
Pike, Professor WT |
|
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Physics |
Organisation: |
Imperial College London |
Scheme: |
Standard Research |
Starts: |
01 September 2020 |
Ends: |
31 August 2022 |
Value (£): |
1,668,874
|
EPSRC Research Topic Classifications: |
|
EPSRC Industrial Sector Classifications: |
|
Related Grants: |
|
Panel History: |
|
Summary on Grant Application Form |
Quantum mechanics is both mysterious and powerful. At a very fundamental level our world works in a bizarre way that defies our common sense. Tapping in to this bizarre world provides a rich avenue to improve our understanding of the foundations of physics and harnessing this behaviour for the development of powerful new quantum technologies. This project will establish a UK-first facility--the Quantum Science and Device Facility (QSDF)--for researchers to tap into key aspects of the quantum world. More specifically, to cool scientific samples to near absolute zero in temperature and study the quantum properties of materials, superconductors, light-matter interactions, and importantly hybrid devices that utilize the advantages that each of these types of systems provide. We will work with national and international collaborators and partners to realise this vision and we will make the facility available to both empower and harness the potential of the wider UK community. Key examples of the science that can emerge from this facility include: laying the foundations for powerful new types of quantum computers comprising superconducting circuits, and making steps towards a "quantum internet" by developing a microwave-to-optical converter that can link distant superconducting quantum computers via optical fibre.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.imperial.ac.uk |