EPSRC Reference: |
EP/V055232/1 |
Title: |
Plasma Microreactors: a Manufacturing Platform for Nanoscale Metal Oxides |
Principal Investigator: |
Mariotti, Professor D |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
School of Engineering |
Organisation: |
University of Ulster |
Scheme: |
Standard Research |
Starts: |
01 July 2021 |
Ends: |
30 June 2024 |
Value (£): |
679,601
|
EPSRC Research Topic Classifications: |
Manufacturing Machine & Plant |
Materials Processing |
|
EPSRC Industrial Sector Classifications: |
|
Related Grants: |
|
Panel History: |
Panel Date | Panel Name | Outcome |
27 Apr 2021
|
Precision Manufacturing - Full Proposals
|
Announced
|
|
Summary on Grant Application Form |
Transition metal oxides (TMOs) are an extraordinary class of materials that have found wide applicability for a number of century-defining technologies (e.g. flat-panel display, capacitors and energy storage) mainly due to their dielectric properties and facilitated by chemical inertness. TMOs are also conceptually simple materials with crucially important properties, they can be formed by low-cost and naturally abundant metals in combination with oxygen, therefore offering commercially attractive materials solutions. Recently, TMOs have seen a surge in application demand and research interest, which revealed their fundamental complexity and yet-to-discover application opportunities. Doping, defect engineering, quantum confinement and extending to ternary or high entropy oxides can lead to new or improved properties and can create disruptive materials. However, to achieve a step change in application performance, manufacturing precision is required at scale, which motivates the production of TMOs materials with ever increasing precision as well as the necessity to establish scalable manufacturing processes. This project will deliver a platform to synthesize TMOs materials with nanoscale precision (down to sub-10 nm scales) and atomically controlled chemical composition. A cold microplasma reactor operated at atmospheric pressure is at the core of this manufacturing technology platform which relies on the most recent 21st century plasma technology developments. The synthesis of TMOs is carried out through the interactions of a cold atmospheric pressure microplasma with a solid metal feedstock in an oxygen-containing gas, contributing to reduce waste and leading to a sustainable, zero-loss and 'greener' manufacturing technology.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.ulst.ac.uk |