EPSRC Reference: |
GR/M22116/01 |
Title: |
A NEW CLASS OF THERMOPLASTIC BLENDS: USING LIFSHITZ TRICRITICAL POINTS TO MAKE POLYMER MICROEMULSIONS |
Principal Investigator: |
Ryan, Professor AJ |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Chemistry |
Organisation: |
University of Sheffield |
Scheme: |
Standard Research (Pre-FEC) |
Starts: |
01 November 1998 |
Ends: |
28 February 2002 |
Value (£): |
181,806
|
EPSRC Research Topic Classifications: |
Materials Characterisation |
Materials Synthesis & Growth |
|
EPSRC Industrial Sector Classifications: |
No relevance to Underpinning Sectors |
|
|
Related Grants: |
|
Panel History: |
|
Summary on Grant Application Form |
One of the most important applications of block copolymers is as compatibilizers of otherwise immiscible homopolymers. In most polymer blends the phase size is determined by rheological factors and the phases are sterically stabilised far from equilibrium. In this situation the equilibrium morphology is two layers and processing in the melt causes a reorganisation of material. This proposal proposes a radically different strategy to make bicontinuous blends where the final morphology is at (or at least close to) equilibrium. We will systematically determine the conditions for preparation of a polymeric microemulsion and its typical lengthscale by first studying the simpler model homopolymer/diblock system, characterizing the morphology experimental and using self-consistent field theory models. Diblock copolymers of polystyrene and polybutadiene will be synthesized where suitable materials are not available commercially. Blends of these model diblocks with incompatible homopolymer will then be investigated. Finally, we will examine the formation of bicontinuous microemulsions in industrially important blends of polypropylene, polyethylene and polyolefin diblocks from hydrogenated polyisoprene-polybutadiene precursors, which match the homopolymers in terms of segment length and interactions. The processing and properties of the blends will be determined as an integral part of the project.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.shef.ac.uk |