EPSRC Reference: |
EP/D030242/1 |
Title: |
Terahertz sensors for extreme environments |
Principal Investigator: |
Johnston, Professor MB |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Oxford Physics |
Organisation: |
University of Oxford |
Scheme: |
Standard Research (Pre-FEC) |
Starts: |
01 October 2005 |
Ends: |
30 September 2010 |
Value (£): |
517,705
|
EPSRC Research Topic Classifications: |
Electronic Devices & Subsys. |
Instrumentation Eng. & Dev. |
|
EPSRC Industrial Sector Classifications: |
|
Related Grants: |
|
Panel History: |
Panel Date | Panel Name | Outcome |
04 May 2005
|
Challenging Engineering
|
Deferred
|
|
Summary on Grant Application Form |
There is growing evidence that our consumption of fossil fuels is degrading the environment, in particular through the effects of global warming. The UK has taken an important step towards reducing harmful greenhouse gas emissions by signing the Kyoto protocol, which became legally binding in February 2005. The UK government has also set the long-term target of a 60% reduction in carbon dioxide emissions by 2050. To achieve this ambitious target we need to rethink the way we generate usable forms of energy for our growing economy. One clean, long-term solution is to exploit nuclear fusion - the process that powers the sun. Much more research on electricity generation using fusion reactors is still required, and a key area of this research is determining the physical properties of the plasma at the core of a fusion reactor. A plasma is clearly an extremely harsh environment, so measuring its properties requires non-contact methods, typically via spectroscopy. However, the noisy environment surrounding a plasma reactor is not ideal for optical spectroscopy. The aim of this proposal is to develop a new generation of spectroscopic sensors that would be particularly well suited to fusion research. The sensors will be based on the novel method of terahertz time-domain spectroscopy. In conventional optical spectroscopy only the intensity of light may be recorded, however in time-domain spectroscopy the electric field of the light is recorded as a function of time giving complete amplitude and phase information of the light. This additional information allows the complete dielectric function of materials to be determined directly, thus allowing many physical properties of the matter such as charge density and conductivity to extracted. This project will develop advanced materials, new terahertz devices and time domain spectroscopy systems that will be ideally suited to fusion research. The project will exploit recent advances in femtosecond fibre laser technology to make sensors that are exceptionally stable, allowing them to operate in the harsh conditions close to a plasma reactor, and extremely compact so they may reach confined locations. The developments achieved in this project will also have wider benefits to those working in fields where spectroscopy is required under conditions of high magnetic field, or extremes of temperature and pressure.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.ox.ac.uk |