EPSRC Reference: |
EP/E006000/1 |
Title: |
ADVANCED SOLID-STATE LASER SOURCES AND SYSTEMS |
Principal Investigator: |
Ferguson, Professor AI |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Inst of Photonics |
Organisation: |
University of Strathclyde |
Scheme: |
Platform Grants |
Starts: |
01 October 2006 |
Ends: |
30 September 2011 |
Value (£): |
841,810
|
EPSRC Research Topic Classifications: |
|
EPSRC Industrial Sector Classifications: |
Communications |
Electronics |
Healthcare |
|
|
Related Grants: |
|
Panel History: |
|
Summary on Grant Application Form |
Tomorrow's practical lasers must be engineered to meet the increasingly exacting demands of science and industry. This will require innovative laser science, and we believe that our world-leading research will enable many of the necessary advances. With the increased coherence and stability that an Engineering Platform grant will foster, we will more readily realise our vision:to engineer miniaturised, reconfigurable and actively-controlled solid-state laser systems, creating new opportunities in science, instrumentation and manufacturing.This strategy addresses issues vital to the practical application of advanced lasers: functionality, reliability and low-cost of ownership - characteristics as important for academic science as they are for innovative bio-medicine or industry. Achieving these objectives demands a multi-disciplinary research team / bringing together an understanding of source, system and application. The Advanced Laser Group combines this necessary range of expertise with an existing research portfolio that has delivered important advances in areas such as high-performance optically pumped semiconductor lasers and self-optimising lasers - resulting in sources tailored for applications as diverse as high resolution biological imaging and free-space optical communications. We will take this work forward through a research strategy that centres on four themes:1. Advanced micro-lasers2. Lasers with programmable output patterns (e.g. for simplified lithography)3. Improved sources for biophotonics and medicine4. Versatile and self re-configurable microprocessor-controlled lasersHowever, this programme must also adapt to the exciting new opportunities that this vibrant area of research are will continue to produce. A strategic outlook, innovative laser science and the flexibility to respond to new opportunities will be essential in achieving our research objectives. Thus, it will be vital to retain key contract research staff, undertake adventurous - but high risk - pre-project studies and collaborate internationally. The flexible funding mechanism of a platform grant will assist with all three imperatives; thus underpinning our innovative research programme.Lasers are a keystone technology: rapid progress in advanced laser engineering is vital to sustain the UK's leading position in the optical sciences, the photonics industry and the crucial applications they jointly enable. Platform grant funding will underpin our existing research strategy, strengthening and adding flexibility to the base from which we can continue to provide important science and technology for tomorrow's truly enabling laser systems.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.strath.ac.uk |