EPSRC Reference: |
EP/G001642/1 |
Title: |
Optical Control of Quantum States in Semiconductor Nanostructures |
Principal Investigator: |
Skolnick, Professor M |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Physics and Astronomy |
Organisation: |
University of Sheffield |
Scheme: |
Standard Research |
Starts: |
01 September 2008 |
Ends: |
01 February 2013 |
Value (£): |
2,913,804
|
EPSRC Research Topic Classifications: |
|
EPSRC Industrial Sector Classifications: |
|
Related Grants: |
|
Panel History: |
Panel Date | Panel Name | Outcome |
30 Apr 2008
|
Physics Prioritisation Panel Meeting
|
Announced
|
|
Summary on Grant Application Form |
The interactions between light and matter in the solid state underpin a wide variety of important areas of science and technology, ranging from commercially available devices such as light emitting diodes and lasers, to very futuristic topics such as logic gates based on quantum mechanical principles, writing and reading of single spins, storage of single photons, and new types of coupled matter-photon particles exhibiting exotic properties such as condensation into a coherent state. However, it is only within approximately the last five years that the technologies have emerged to accurately prepare and control the properties of electrons in fully confined structures, and to fabricate small volume high performance nano-cavities to control the properties of photons, and thus to access many of the above very forward-looking opportunities.This leads to the subject area of the present proposal: we aim to control the quantum states of electrons and photons and of their mutual interactions to produce new advances in quantum information science, quantum optics and interacting coherent systems. This will be achieved by a highly interactive programme comprising the essential component parts of advanced experimentation and theory, and well developed crystal growth and device technology, both within our own laboratories and with collaborators within the UK and Europe.The research we propose is closely interlinked, and focuses into four related areas, all involving similar samples, experimental techniques and theoretical concepts, in the areas of ultrafast quantum control, nano-magnetic systems, entanglement of remote quantum systems, and the condensed high density state which arises in specially designed optical cavities. It is expected to result in major advances towards a number of long-term goals, for example: the exploitation of the long coherence time of electron spins for quantum information processing, quantum logic in semiconductor systems, the development of scalable qubit systems based either on excitons or photons, and superfluidity and quantum oscillations in designer-controlled interacting systems.Support is requested via Programme Grant funding of the Physics Programme of EPSRC. Such funding is specifically designed to permit the establishment of coherent activities which are able to compete successfully on the international scale, and has been critical to our recent successes.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.shef.ac.uk |