EPSRC Reference: |
EP/L002531/1 |
Title: |
Energy Efficient Rural Food Processing Utilising Renewable Energy to Improve Rural Livelihoods |
Principal Investigator: |
Roskilly, Professor AP |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
NIRES Newcastle Inst for Res on Env &Sus |
Organisation: |
Newcastle University |
Scheme: |
Standard Research - NR1 |
Starts: |
01 July 2013 |
Ends: |
31 December 2016 |
Value (£): |
746,938
|
EPSRC Research Topic Classifications: |
|
EPSRC Industrial Sector Classifications: |
|
Related Grants: |
|
Panel History: |
Panel Date | Panel Name | Outcome |
08 Mar 2013
|
Energy & International Development: USES
|
Announced
|
|
Summary on Grant Application Form |
The World Health Organization already estimate that nearly 60% of the world population is malnourished and unless serious measures are not taken to address this then the situation will be exacerbated further. A lot of effort has quite rightly focussed on increasing food production but this is dependent on increased use of valuable resources. The minimisation of losses in the food chain will not only increase the quantity and quality of produce but also reduce energy, water and land use. Postharvest food losses are approximately one third of the total world yield and can be up to 50% in some developing countries.
The use of fossil fuels has allowed a greater number of people to be fed and to ensure that the numbers of malnourished are not even worse. Developing countries have high population growth and are increasingly using fossil fuels in food production to meet demands. Energy input is required across the entire food chain and it is estimated that 7-10 calories are required in the production of 1 calorie of food. This is primarily from fossil fuels which will increasingly be more expensive and post-harvest losses indirectly contribute to increased greenhouse gas emissions and climate change. It is therefore essential that technologies and practices adopted to reduce post-harvest losses are energy efficient and integrate effective renewable energy solutions such as biomass, solar PV, solar thermal, wind turbines, micro-/pico-hydropower.
In sub-Saharan Africa significant losses are as a result of a number of factors which include insufficient drying, inadequate storage, insufficient cooling and poor transport - all of which rely on high levels of energy input. Decentralised, distributed food processing supported by distributed energy supply can not only improve food security but also provide employment and income generation in rural communities. The local processing of food enables better storage and easier transportation, longer shelf-life, reduced seasonal supply effects, and produces products with added value.
The project aims to provide research which will support rural community business models for low and renewable energy input into food processing which minimise post-harvest loss and waste.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.ncl.ac.uk |