EPSRC Reference: |
EP/R023018/1 |
Title: |
Q-DOS : QKD for Drones with Optimal Size weight and power |
Principal Investigator: |
Rarity, Professor J |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Electrical and Electronic Engineering |
Organisation: |
University of Bristol |
Scheme: |
Technology Programme |
Starts: |
01 November 2017 |
Ends: |
30 April 2019 |
Value (£): |
203,129
|
EPSRC Research Topic Classifications: |
|
EPSRC Industrial Sector Classifications: |
|
Related Grants: |
|
Panel History: |
|
Summary on Grant Application Form |
Lightweight Unmanned Aerial Vehicles (UAVs) have seen a huge increase in commercial uptake in recent years, but their applications have been limited, in part by the inability to securely communicate highly sensitive data back to the ground. Project Q-DOS (QKD for Drones with Optimal Size weight and power) will solve this problem by delivering a unique quantum encrypted communication system with an eavesdropping detection feature between an airborne platform and a ground-based station. This hyper-secure system is based on Quantum Key Distribution (QKD), which provides future proof communications security combined with the novel ability to detect eavesdroppers. A key challenge is meeting the demanding Size, Weight and Power (SWaP) requirements as the system will have to be deployed on a lightweight (under 7kg) drone. This will be achieved by using the novel integrated quantum optical QKD chips combined with flight-proven optical communications system developed by project members. We expect the outcome of this project not only to be a step change in capability in the secured drone market (both military and commercial), but to open up a significant number of areas, moving QKD away from niche applications and towards mainstream adoption.
The Centre for Quantum Photonics at the University of Bristol is one of the world leaders in the development of integrated quantum photonics technology. It has a wealth of practical knowledge (also in free-space QKD experiments) which it hopes to contribute to the project. In particular, UoB will collaborate in the development of detector technologies and provide detector characterisation facilities, provide a combination fast and slow driving electronics, all combined with significant person-power of expertise of QKD systems and field experiments.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.bris.ac.uk |