EPSRC logo

Details of Grant 

EPSRC Reference: EP/S001824/1
Title: Unveiling the injection dynamics of cryogenic energy carriers for zero-emission high-efficiency systems
Principal Investigator: Vogiatzaki, Dr K
Other Investigators:
Researcher Co-Investigators:
Project Partners:
Libertine FPE Ltd Ricardo Group Stuttgart University
Department: Sch of Computing, Engineering & Maths
Organisation: University of Brighton
Scheme: EPSRC Fellowship - NHFP
Starts: 29 June 2018 Ends: 31 January 2022 Value (£): 449,994
EPSRC Research Topic Classifications:
Energy Storage
EPSRC Industrial Sector Classifications:
Energy
Related Grants:
Panel History:
Panel DatePanel NameOutcome
08 May 2018 EPSRC UKRI CL Innovation Fellowship Interview Panel 2 - 8 and 9 May 2018 Announced
Summary on Grant Application Form
The project aims to create new fundamental knowledge and advanced numerical tools regarding the atomisation, heating and evaporation characteristics of liquefied gases, in order to significantly advance the technology required to efficiently control cryogenic injection. Liquid gases such as air, nitrogen or natural gas can serve as cost-effective energy vectors within power production units as well as transport "fuels" with zero emissions. For example, energy coming from renewables can be used in order to "cool" air or nitrogen, up to the point that they become liquids. Follow up injection of these liquids to a higher temperature environment causes rapid re-gasification and a 700-fold expansion in volume, which can drive a turbine or piston engine even without combustion. Most importantly, because of the low boiling point of cryogenic liquids, low-grade or ambient heat can be used as a heat source, which otherwise is wasted. A better understanding and control of the injection dynamics of the cryogenic fluids could boost the efficiency of hybrid combustion systems to 60% (Ricardo's Cryopowder split-cycle engine), and achieve zero emissions when used for work generation through isothermal expansion without the need of combustion (Dearman Engine and Libertine Free Piston Engine). Recently, there has been an increased interest towards cryogenic technologies, however this has been focused mostly on the liquefaction processes (such as the £6m EPSRC grant to the Birmingham Centre for Cryogenic Energy Storage). Within the suggested project the attention is shifted towords the injection process of the cryogenics in real life industrial applications. Dr Vogiatzaki with the support from two leading UK companies in the field of innovative energy system solutions (Ricardo Ltd and Libertine Ltd) aspires to provide new knowledge and robust modelling tools to unlock the dynamics of cryogenic energy carrier's atomisation and heat transfer dynamics.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.bton.ac.uk