EPSRC logo

Details of Grant 

EPSRC Reference: EP/S026371/1
Title: From the cluster to the clinic: Real-time treatment planning for transcranial ultrasound therapy using deep learning (Ext.)
Principal Investigator: Treeby, Professor BE
Other Investigators:
Researcher Co-Investigators:
Project Partners:
Harvard University Profound Medical Inc. Theraclion
University of Oxford
Department: Medical Physics and Biomedical Eng
Organisation: UCL
Scheme: EPSRC Fellowship
Starts: 31 August 2019 Ends: 30 August 2022 Value (£): 952,159
EPSRC Research Topic Classifications:
Med.Instrument.Device& Equip.
EPSRC Industrial Sector Classifications:
Healthcare
Related Grants:
Panel History:
Panel DatePanel NameOutcome
14 May 2019 Engineering Fellowships Interview Panel Meeting 14 and 15 May 2019 Announced
06 Feb 2019 Engineering Prioritisation Panel Meeting 6 and 7 February 2019 Announced
Summary on Grant Application Form
This is an extension of the Early Career Fellowship: Model-Based Treatment Planning for Focused Ultrasound Surgery.

Brain disorders present a huge challenge for health services across the world, with studies showing these conditions affect as many as one third of the adult population. In the UK, approximately 1 in 6 people are affected by a neurological disorder and 1 in 6 by a common psychiatric disorder. The total annual cost of these conditions is estimated to exceed £100 billion. These disorders can be devastating for patients and greatly reduce their quality of life. Today, patients are often treated by the prescription of drugs that alter the way the brain functions. For many patients, this causes a reduction in their symptoms. However, if these drugs are used for long periods of time, their effectiveness often decreases and there can be many side-effects. It can also be difficult for drugs to exit the blood-stream and enter the brain as desired because of a protective lining called the blood-brain barrier. Depending on their diagnosis, some patients may also be offered surgical procedures to remove part of the brain or implant small wires that use electricity to stimulate brain cells.

One exciting alternative to drugs and surgery is the use of ultrasound. Ultrasound imaging is well known for taking pictures of developing babies during pregnancy. However, ultrasound is now also starting to be used to treat brain disorders. This is possible because ultrasound waves cause mechanical vibrations that affect the brain in different ways. For example, they can cause the tissue to heat up or generate forces that agitate the brain cells and tissue scaffolding. Several different types of treatment are possible depending on the pattern of ultrasound pulses used. This includes precisely destroying small regions of tissue, generating or suppressing electrical signals in the brain, or temporarily opening the blood-brain barrier to allow drugs to be delivered more effectively. These treatments are all completely non-invasive and have the potential to significantly improve outcomes for patients.

A major challenge for ultrasound therapy is ensuring the ultrasound energy is delivered to the precise location identified by the doctor. This is difficult because the skull bone is very rigid and causes the ultrasound waves to be reflected and distorted. It is possible to predict and correct for these distortions using powerful computer models of how ultrasound waves travel through the body. However, these models can take many hours or days to run on large supercomputers, so cannot currently be used for patient treatments.

The aim of this fellowship extension is to develop a new type of model that can make very fast predictions of how sound waves travel in the brain. This will be based on a special type of artificial intelligence called deep learning. The deep learning models will be trained to predict the distortion caused by the skull bone. The models will learn this using a large number of training examples generated using the powerful computer models mentioned above. As part of the project, the models will be rigorously tested using patient data from previous clinical treatments. Carefully planned laboratory experiments using phantom materials designed to mimic the skull and brain will also be conducted. The new models will allow doctors to automatically correct for distortions caused by the skull and quickly predict the treatment outcomes. This would be a major breakthrough in the treatment of brain disorders and enable the wide-spread application of ground-breaking ultrasound therapies.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: