EPSRC logo

Details of Grant 

EPSRC Reference: EP/T019182/1
Title: Ultrafast Laser Spectroscopy with Photons from the IR to the VUV
Principal Investigator: Fielding, Professor H
Other Investigators:
Volpe, Dr G Price, Professor D Parkin, Professor IP
Ingle, Dr R PARKES, Dr MA Clarke, Dr T M
Thornton, Professor G
Researcher Co-Investigators:
Project Partners:
Coherent UK Ltd Photon Lines Ltd (UK)
Department: Chemistry
Organisation: UCL
Scheme: Standard Research
Starts: 01 January 2021 Ends: 31 December 2022 Value (£): 1,249,134
EPSRC Research Topic Classifications:
Gas & Solution Phase Reactions
EPSRC Industrial Sector Classifications:
No relevance to Underpinning Sectors
Related Grants:
Panel History:
Panel DatePanel NameOutcome
19 Nov 2019 EPSRC Strategic Equipment Interview Panel November 2019 - Panel 2 Announced
Summary on Grant Application Form
Light is essential for life. For example, light is key to photosynthesis and vision. Light is also important in technology, such as in nanoscale optoelectronic devices. Developing a molecular-level understanding of light-induced processes is crucial for the rational design of new light-activated materials to address important challenges currently facing society, such as harnessing solar energy efficiently and developing new tools for disease diagnosis and therapeutics. Our vision is to establish a unique, state-of-the-art, laser facility providing femtosecond light pulses with a wide range of energies, from the infrared (IR) to the vacuum ultraviolet (VUV), housed in a £2M purpose-built, environmentally-controlled, stable basement laboratory. We will exploit this facility to improve our fundamental understanding of light-induced processes by using a bottom-up approach to study systems across the complexity scale, from isolated gas-phase molecules to proteins, nanoparticles, soft materials and solids, for applications ranging from bioimaging and therapeutics to solar energy materials. This will be achieved using a single spectroscopic technique, time-resolved photoelectron spectroscopy, in molecular and ion beams, liquid-microjets and surfaces, complemented by femtosecond transient absorption spectroscopy, femtosecond stimulated Raman spectroscopy and multi-photon microscopy.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: