BONSAI is an ambitious 3-year research project aimed at investigating the fundamental heat and mass transfer features of boiling flows in miniaturised channels. It combines cutting-edge experiments based on space/time-resolved diagnostics, with high-fidelity interface-resolving numerical simulations, to ultimately provide validated thermal-design tools for high-performance compact evaporators. The proposed project assembles multidisciplinary expertise of investigators at Imperial College London, Brunel University London, and the University of Nottingham, with support from 3 world-leading research institutes: Alan Turing Institute, CERN (Switzerland) and VIR2AL; and 11 industry partners: Aavid Boyd Thermacore, Alfa Laval, CALGAVIN, HEXAG&PIN, HiETA, Hubbard/Daikin, IBM, Oxford nanoSystems, Ricardo, TMD and TTP.
The recent trend towards device miniaturisation driven by the microelectronics industry has placed an increasing demand on removing higher thermal loads, of order of MW/m2, from areas of order cm2. In some applications (e.g. refrigeration) new 'green' refrigerants are needed, but in small volumes due to flammability or cost, while in others (e.g. batteries for EV and other applications) non-uniform or unsteady heat dissipation is highly detrimental to performance and lifetime. Flow boiling in multi-microchannel evaporators promises to meet such challenging requirements with low fluid volumes, also allowing better temperature uniformity and smaller pumping power, in systems that go well beyond the current state-of-the-art. Due to significant industrial (heat exchange) and environmental (efficient energy use) interest, the understanding of boiling heat transfer has improved in recent years, with focus on flow pattern transitions and characteristics, pressure drop, and heat transfer performance. However, our current understanding is simply insufficient to facilitate the wider use of these micro-heat-exchangers in industry, which remains unexploited.
BONSAI has been tailored specifically to address the fundamental phenomena underlying boiling in miniaturised devices and their relevance to industrial design. The challenges to be addressed include the impact of channel shape and surface characteristics on flow instabilities, heat transfer and pressure drop, and the relationship between the time-dependent evolution of the liquid-vapour interface, thin liquid-film dynamics, flow field, appearance of dry vapour patches, hot spots, and local heat transfer characteristics. The extensive experimental/numerical database generated will be exploited via theoretical and novel machine-learning methods to develop physics-based design tools for predicting the effects of industrially-relevant thermohydraulic parameters on system performance. The collaboration with our partners will ensure alignment with industrial needs and accelerate technology transfer to industry. In addition, HiETA will provide Metal Additive Manufacturing heat sinks that will be assessed against embossing technologies as ways of mass-producing microchannel heat exchangers, Oxford nanoSystems will provide nano-structured surface coatings, and IBM will support visits to their Research Labs focussed on efficient parallelisation of the numerical solver and scale-out studies.
The proposed research will not only enable a wider adoption of two-phase thermal solutions and hence the meeting of current and future needs across industrial sectors, but also will lead to more efficient thermal management of data-centres with associated reduction in energy consumption and carbon footprint, and the recovery and reuse of waste heat that is currently being rejected. This will constitute an important step towards meeting the UK's emission targets by 2050. Additionally, BONSAI will integrate with EPSRC Prosperity Outcomes of Delivery Plan 2016-20 and enable technological advances in relation to the Manufacturing the Future theme, contributing to a Productive and Resilient Nation.
|